CLOCK
To evolve from apes 7 hrs
Homo Sapiens so far 10mins
Human history 30secs
1000 years 3secs
I year 3msec
HOW IT's DONE. - TARGETS
TARGETS
HSO
Elephants Trunk IC 1396 35 mins close to Deneb, head is 6 min - RASA - Redo
Flaming Star IC405 or Caldwell 31 next to Tadpole Nebula NGC1893
Trifid NGC6514 (close to Rosette 10 arcmins M6.3
N.American NGC7000 , Deneb - 100mm + Sony and NF QHY in March in Wimberley
Orion NGC1976
Flame
Andromeda 3 deg NGC224 or M31
Stephans quintet NGC7320 7331 neighbour near Andrmeda
Phantom Galaxy 20' M74 between Orion and ANdromeda
Whirlpool Galaxy NGC5194 near Ursa Minor
Antennae galax NGC4039 - April.May near VIRGO - Southern cross end MW
Gamma Leonis Group NGC 3190 in leo
Eagle Nebula NGC6611 (Pillars of creation) 35 arc min in Core, pillars is 6 arcmin across - RASA
Omega Nebula - close by to Eagle -Eagle and Omega may just fit in RASA field, otherwise 100mm.
Lagoon NGC6530
Cats Paw NGC 6334 35 arc min close to Lagoon
Antares IC4604 - needs 100mm lens and low noise - 5 sec no track. Try using Fornax or mount. 1 hour of collection.
Sony 7as with bulb and Darks. ISO 6400.
Milky Way with foreground - 8mm & Ha filter. 180 deg FOV - Deneb overhead in AK Sept. 20mm f2 ISO640 120s - deep nebula.
Milky Way full spectrum - 8mm/filter/QHY = 90 deg FOV
Milky Way time lapse -
8-20mm Sony 7as - 30s @3200 = 65 sec cycles = 1 frame every 10 arcmins of motion. Compress to 20 fps for smooth action. Make corrections to RAW files. Use Photodirector - 0.02 per frame. 45 mins of 8mm lens = 2 secs of video. 2 hours for 30 degrees of motion. Need battery extender.
iPhone14 Night mode - on tripod. Much noisier than Sony RAW.
Northern Lights - iPhone 1x 24mm best resolution, or 8mm & 20mm Sony 7as.
Sombrero Galaxy 15 amin in Virgo.
Needle Galaxy 15 arcmin in Coma next to Canis
Helix 18 arcmins M7.3 in Aquarius
Crab Nebula NGC 1952 6 arcmin M8.4 supernova remnant.
REDO
Leo Triplet M66
Markarians Chain.
Triangulum
Long term
Eskimo - Clown faced nebula 54 arcsecs M9.1
Cats eye 38 arcsecs M8.1 in Drago
Stephans quintet M14 in Virgo near Andromeda
OPPORTUNITIES
Spring Northern Galaxies, MW low in sky
Summer Core, rho, Eagle N, Lagoon N
Fall Andromeda, Deneb, Elephants trunk N
Winter Orion N.
BIG PROJECTS
Nebulae HOS - large 100mm, small needs RASA
Milky Way HOS - needs 8mm and ASI
Galaxies high res - needs C6 and good seeing
Planets high res - needs C6 and good seein
Total Eclipse
Full sequence single view.... cell phone.
Full sequence scanned - Bailey beads/Diamond - need video - 400mm
Corona 2 degree edge to edge - Multiple exposures on scan stage - 400mm -
Protrusions 30 asecs similar to Jupiter - Telephoto find protrusion - P1000 video.
Use scanning stage to track and create a time lapse video. How to deal with transition in and out of totality.
Use Hyperlapse on phone to cover whole transition.
Annular Eclipse
Oct 14 2023, at noon 52 degrees alt due south.
100mm lens at f32 has a 6m -inf DOF, good for eclipse with foreground, limited by Sony 7as pixel res.
100mm Canon lens stopped down with Svbony.
400mm lens at f22 has 132m-inf DOF will require refocus, needed for good resolution.
Generates ring, needs an interesting center for the bulls eye. A wind director to form an arrow. Or Texas capitol statue. Sonora, or Rocksprings in center of totality. Kerrville about half way out - Kerrville clock is a possibility, San Antonio Basilica of the National Shrine of the Little Flower, 1715 N Zarzamora St, littleflowerbasilica.org. The Alamo.
COMPOSITES
Video tour.
Milky Way visible with Nebula foregrounds.
Northern Hemisphere with Galaxy foregrounds
VIDEO tour script
Launch
Tour Milky Way
Planets - Moon - Mars - Jupiter - Saturn add light year clock in bottom right from here
Plieades - Antares - Orion & Flame & Rosette - Lagoon & Eagle - clip all and superimpose on full pan all to give depth scale full MW 10% for Orion and lagoon.
Isolate lagoon (may be at 400mm) and zoom in keeping full MW background fixed
Pass Lagoon and zoom in to MW, scan and exit (100 mm images)
LMC_SMC (all deep sky from here)
Andromeda
Triangulum 2Mly
Bode 11 then Cigar 12
Whirlpool 23
Leo M61 32 then Sarah 36 then M65 41
Hubble 11Bly
Create foreground and background for zoom.
Select key area - inverse - copypaste new layer - select big star - enlarge 3 - copy paste to form star layer - copy star layer - select bkg - inverse - enlarge 5 - move /copy/paste in original layer to replace foregrounds. Now have foreground and background.
Match middle ground to background, zoom in final step. Start foreground 1/3 frame early to get sense of foreground relative to background.

Saturn and Jupiter grand conjunction (one day before)
Camera is a Nikon P1000 on a Fornax tracking stage so the planet stays in frame. Get the zoom setting right at 6000 mm equivalent. Take 1 min videos at different ISO settings for the moons and planets. Wait for the perfect align to get a single align shot. Wait for planets to move away. Go back and get a video of the right bit of foreground. Use software to separate into frames and then stack 100+ frames to a single low noise image at each ISO using AutoStakkert. Then assemble the images in Photoshop. Using the align image as background image in the layers, cut around the foreground, planets and moons layers to form a spatially correct, very high dynamic range, composite. You have to size the cuts to cover up the overexposed planets in the background layer. Merge the layers and adjust to taste !! Its the better part of a day post processing to get it to work. The key really is the frame stacking it reduces the low light ISO noise and the atmospheric noise. QED!

Andromeda (M31) Mag. 3.4, Size 3 degrees.
Above M110 Mag. 8.9, Size 21'.
Photographed using a Canon 7as
400mm f6.1 exposed 10x30 secs @ 25600 ISO at 1.5M ISOsecs, Fornax tracking stage.
Bortle 2 sky - background at Mag. 11.

Flame Nebula in Orion Mag. 7.2, Size 30', illuminated by the neighboring star Alnitak Mag. 1.74.
Photographed using astro mod Canon 7as 400mm f6.1, exposed at 0.6M ISOsecs. Fornax tracking stage.
3 degree field of view.
Bortle 4 sky - background at Mag. 9
HDR created with the stars imaged by 4 smaller exposures, converted to B&W and stacked, then stacked with the nebula image.

Stitched fish eye view panorama June, Sept and Dec, March in southern hemisphere.
20 mm lens with a 84x61 degree field @ 20secs 2000 ISO. In landscape orientation starting 20 degrees angled up. In 4 vertical rows 25 degree increments; on the horizon 25 x 15 degree rotations, 12 x 30 degree, 4 x 90 degree, 1 vertical view. Assemble each session using PTgui software using equirectangular mode and linear corrections, discard any excess images. Combine sessions by manual stich, and take out edge illumination artifacts using PS level in +- 10% level increments.


I have a new appreciation for the nerds at Nikon. Here is a picture of Saturn that I think provides a direct measure of the optical performance of the P1000. It was taken at 12,000 mm zoom – 3000 mm optical and 4 x digital (i.e. cropped and resampled). The image was taken as a video on a tripod with a Fornax tracking stage. The focus was set manually using the remote control. A selection of the 250 best frames in a 2 minute video were averaged using Austostakkert. The results is the image with my best focus, least atmospherics, and minimized digitization. Atmospherics dominate so frame count and pixel count is more important than low compression. The NikonP1000 supports higher video resolution and better pixel resolution at 12kmm zoom, than the Sony 7as. If seeing creates 20 pixel noise in 1 frame, 100 frames = 13 pixel noise, 2000 frames = 10 pixel noise, 4000 frames 25% = 5 pixel noise.
The dark band (Cassini’s Division) between the 2 major rings is hinted but not resolved. The average Saturn diameter is 14.5″ to 20.1″ excluding rings, 35" for outer ring. Using a high resolution Hubble photo of Saturn, also shown, Cassini’s Division is about 0.5 arc secs wide, and the dark band between the planet and the first ring is about 5 arc secs wide.
The aperture of the P1000 is 70 mm, which translates into a Rayleigh diffraction limited resolution of 1.97 arc secs. (https://astronomy.tools/calculators/telescope_capabilities). Rayliegh limit (1.22 lambda/d) = 1.8 arc secs, edge resolution 0.9 arc secs, recorded at 2160i video so pixel = 0.25 arc secs, with 4x video compression.
At 3000 mm, the pixel resolution of the P1000 is 0.7 arc secs, equal to the edge resolution – as it should be !
It looks to me like the limiting resolution of the P1000 must be close to the diffraction limit of 2 arc secs based on almost resolving Cassini’s Division at 0.5 arc secs, and clearly resolving the first dark band at 5 arc secs.
BRAVO – to Nikon nerds !
BTW In 1675, Cassini in the Paris Observatory used telescopes with focal lengths up to 136 feet long to observe Saturn and its division. (http://www.cosmicelk.net/telrev.htm)
ACTIONS
1) Collimation
2) Guiding Svbony
3) Eagle Nebula with filters. 20 minute field. 6 minute to emulate Hubble 180 pixel image. Need stack for HDR of saturated stars.

