top of page


Scenery is created by the deposition of rocks, the uplift of rocks, and the erosion of rocks. It is then modified by the vegetation that the  land supports.  Scenery can be broadly classified by the underlying geology

  • Volcanic 

  • Sandstone

  • Metamorphic 

Eroded by 

  • Fresh water 

  • Ice

  • Oceans

  • Meteors

  • Volcanic explosions

Leaving bare rock unless overgrown by 

  • Evergreen forest

  • Deciduous forest

  • Tropical forest 

  • Grassland 

  • Ice

  • Redeposited sand as beaches and silt ​

Today's scenery is the latest snap shot of the  accumulation of multiple cycles of uplift and removal, dominated by the partial erosion of the last uplift. The erosion is mostly caused by liquid water creating "V shaped" valleys often following fault lines, and cliffs at the ocean. Glacier ice erodes creating "U- shaped" valleys. Secondary sources of erosion are wind, meteor impact, volcanic explosion. Where there is water, vegetation overgrows the rock. 

Plate tectonics is the engine of change in our scenery. Volcanic activity leads to magma forming real time land growth mostly along plate boundaries such as the Cascades on the  "Ring of Fire" and at stationary hot spots such as Hawaii and Galapagos. 

Sandstone is created from erosion debris settling out of the water. Uplift of sandstone from plate motion creates dry land that is then subject to water erosion to create places such as Zion, Grand Canyon and the Canadian Rockies. 

Motion at plate boundaries also drive sandstone down towards the molten core. High pressure and temperature, and injections of magma causes chemical changes in sandstone to create metamorphic rock. Subsequent uplift from plate motion exposes the rock to erosion.  The youngest mountains such as the Sierras were uplifted 6-5My ago. The Himalayas and Rockies were uplifted  60My-40My ago. The Appalachians were uplifted 300My ago during the creation of Pangea. 

The oldest rocks that are visible today are 4500My ago in western Australia, because Australia is in relative tectonic isolation. 


Uplift associated with tectonic plate boundaries creates the starting point for erosion.



Volcanism produces the most recent structures along the fault lines of the tectonic plates; 

  • Galapagos, Hawaii and Iceland are all "hot spot"  locations were you can observe the expulsion of liquid magma. 

  • Cascade volcanoes are less than 2My old, and the highest peaks are less than 100Ky old. Beyond the eastern foothills is an arid plateau that was largely created 17My to 14My ago. 

  • La Veta, the Spanish Peaks and all the other features, with few exceptions, were intruded as much as 10 km below the paleo surface that existed some 20-30 million years ago.  The processes of uplift, weathering and erosion since then have revealed what we see today.  All the features you see are referred to as “erosional remnants” because most of them are more resistant to weathering than the softer sedimentary rock they intruded. 



Sandstones and limestones are deposited in layers out of shallow seas. Away from the plate boundaries, the sandstone layers remain pristine. These are then uplifted and eroded to produce classic stair step valley walls.

  • Zion was deposited 260 M (Kaibab) - 100 M years ago.  The upper half of Zion Canyon was carved between about 1 and 2 million years ago  with the Narrows  formed more recently.[27] There is a deep layer of white Navajo Sandstone.

  • Escalente Staircase - White Pocket was 200-195My ago when White Navajo Sandstone was soaked in water and then subject to compression.  

  • Monument  Valley was deposited in 300My - 270My agoThe floor is largely siltstone  deposited as silt by the meandering rivers that carved the valley over the last 2My. The mesa wall vivid red color comes from iron oxide exposed in the weathered "De Chelly" sandstone deposited 280My ago. The darker, blue-gray rocks in the valley get their color from manganese oxide.

  • Grand Canyon was deposited  from 1.6B-270My ago have been exposed as the Colorado River and its tributaries cut their channels through layer after layer of rock while the Colorado Plateau was uplifted from  5 to 6 million years ago.

  • Canadian Rockies were deposited 500My ago, and uplifted 80 and 55My ago from plate pressure analogous to pushing a rug on a hardwood floor the rug bunches up and forms wrinkles of unmodified sandstone with fossils


Metamorphic rocks started as sandstones. Near plate boundaries, sandstones are driven down and magma injected in at high pressure creating new crystals structures. These rocks are typically much harder and resistant to erosion. As a result Metamorphic rocks form some of the steepest and most majestic mountains. Plutonic describes metamorphic rock that includes igneous rock formed by solidification of magma at considerable depth beneath the earth's surface. The granite igneous inclusions of  Yosemite in the metamorphic Sierra Nevada are an example. Metamorphic tectonite is a rock in which the fabric elements reflect the history of deformation, for example slate or slab.


  • Sierra Nevada deposited  252My to 66My ago, uplifted less than 5My ago,  not long after the Sierra uplift began, ice ages started carving U-shaped valleys. The sheer walls and hanging valleys of Yosemite National Park are a product of this chilly past.

  • Rocky Mountains were deposited  500My ago, the latest uplift between 80 and 55My ago.  In the  south, an unusual low angle subduction  produced the growth of the metamorphic Rocky Mountains in the United States, much farther inland than the normal 300 to 500 km.  Around 55My ago, the Rockies were like Tibet: a high plateau, probably 6,000 metres (20,000 ft) above sea level. Subsequent erosion stripped away the high rocks, revealing the ancestral rocks beneath, and forming the current landscape of the Rockies.  

  • Appalachians first formed roughly 480 million years ago, uplifted 270My ago when Africa (Gondwana) plowed into Pangea to form mountains that stretched all the way from East US to Norway in Pangea. They once reached elevations similar to those of the Alps and the Rocky Mountains before experiencing natural erosion. It was not until the region was uplifted around 50My ago that the distinctive topography of the present was exposed.[19] Uplift rejuvenated the streams, which cleared deposits back to the 270My old structures. 

  • Australia was deposited as 4500-2500My  rocks mostly in the west, 2500 to 538My  rocks in the center, and 538y to present rocks in the east. Down drive and uplift occurred due to plate movements in  NunaRodinia and PangeaRecent geologic events are confined to intraplate earthquakes, as the continent of Australia sits distant from the plate boundary. 



Water erosion

The flow of liquid water is probably makes the single biggest natural impact on our scenery. It flows downhill though any weakness in the rock forming anything from slot canyons to wide V-shaped valleys. In colder climes, ice flows much more slowly but is hard and abrasive. Glaciers from the ice ages 400Ky - 20Ky ago covered roughly half the globe creating U shaped valleys. Today's glaciers are receding due to global warning.  On the coast, ocean waves are another aggressive source of erosion. 


  • Victoria Falls. 

  • GC,

  • Norway

  • Cliffs


Meteor erosion to form craters

  • Meteor crater The object that excavated the crater was a nickel-iron meteorite about 50m (compared to 10km for the KT meteor) across created about 50,000 years ago when the local climate on the Colorado Plateau was much cooler and damper.[9][10] The area was an open grassland dotted with woodlands inhabited by mammoths and giant ground sloths 

  • Chicxulub crater formed 66My ago by a 10km wide meteor was responsible for the extinction of the dinosaurs. 

Volcanic explosion to form caldera

Caldera from volcanic explosion - Mt St Helens, Santorini, Yellowstone 

  • Mount St Helens is a explosion that occurred in 1982.

  • Santorini island was the site of   the Minoan eruption (sometimes called the Thera eruption), which occurred about 3,600 years ago.  The eruption left a large caldera surrounded by volcanic ash deposits hundreds of metres deep.

  • The Yellowstone Caldera, formed during the last of three supereruptions over the past 2.1M - 600K years, measures 70 by 45 km.

Screenshot (23).png
Screenshot (22).png
Screenshot (24).png


Coned mountains  - Mt Ranier WA, also Mt Fuji etc. 

The youngest mountains are volcanic which are located at tectonic  plate boundaries and hot spots. 

Fissures  - La Veta CO, also on the Big Island HI

Weaknesses in the sides of volcanoes leads to cracks filled with lava that forms fissures.

Geyser  -  Old Faithful at Yellowstone NP in WY

Stable openings to the hot lava allow water to be boiled off as geysers.

Eroded Lava  -  Cape Verde Islands, Kawaii Island HI

The lava is soft and easily eroded by rain.  

Fresh lava - Galapagos,  Big Island HI, and Iceland

No vegetation at all.


Layered mountains - Canadian Rockies

Layered sedimentary rocks that are uplifted away from tectonic plate boundaries, and are relatively unusual.   Because  of their height, these ranges are deserts and mostly show glacial erosion.

Eroded Valley - Zion UT, Petra in Jordan, also Grand Canyon AZ.

Sedimentary rocks eroded along fault lines by  water from nearby mountains which produces some of the most spectacular eroded structures such as walled valleys and  slot canyons.  The absence of local rain in the desert minimizes subsequent erosion of the structures. 

Eroded Mesas - Monument Valley & White Pocket

Erosion of weaker sedimentary rocks on top of a fault- free harder layer produces mesas (Monument Valley). When the sandstone is under water when pressured, it folds into complex shapes (White Pocket in Esclante NP). 

Forested Mesa - Karst Islands in Thailand

Rounded forested sedimentary rock structures are seen in regions with local rainfall. "Karst" Limestone mesas also show stalactites on the outside surface.  

Desert - Wadi Rum in Jordan

Sharp edged mesas become  wind blown and rounded in locations susceptible to sand storms. 




Jagged mountain - Grand Tetons WY, Torres del Paine in Chile, also the Himalayas, Alps.

At the tectonic plate boundaries, sedimentary rocks can be exposed to extreme heat and pressure which transforms the chemical make up to form much harder "metamorphic"  materials. In subsequent plate activity, uplift creates mountains that are resistant to erosion. The most common base for earths mountains. Fossil free. 

Coniferous forested  foothills - Yosimite

At higher latitude/altitude, coniferous forest blankets the rocks. The seeds and co-residents form a home for large omnivores such as  bears.

Old metamorphic, deciduous forested  - Appalachian Mts VT.

Lower mountains are often older eroded metamorphic rocks. At lower altitude they are blanketed by deciduous forest.

Prarie supporting  herbivores - Yellowstone WY

Low rain regions support Prairie grasslands. Home of herds of herbivores such as buffalo and moose,  and their wolf and bear predators.

Sand dunes  - Sand Dunes NP CO

Erosion products collect in sand dunes. 


Forested mountains  - Vinunga NP Rwanda File Photo

Near the equator, even mountains are blanketed by thick tropical rain forest. 

Montane cloud rainforest -Rwanda, Costa Rica

Tropical rain forest is full of seeds and fruits.  Home of large omnivores such as gorillas and chimpanzees..

Lowland Tropical Forest  - Ecuador Amazon.

At lower altitudes, smaller primates thrive such as howler monkeys.  Spectacular tropical birds also thrive.

Savannah - Botswana

Less water produces Savannah grasslands that support a wide variety of herbivores from Elephants to Wildebeest, Giraffes, and  Deer. 


Sand dunes - Namibia File Photo

At the Western coast there are no rain making mountains, and sand dunes dominate. 

Fresh water 

Mountain glaciers - Rockies ice field,  Fjords.

At high altitudes, the hard ice in glaciers scour the rocks creating U shaped valleys. Where the glacier melts, the eroded material fills the river with silt and rubble. During last ice age, glaciers created valleys that are now fjords. 

Lakes -  Sierra Mts 

A staple of mountain scenery, 

Waterfall - Yellowstone Falls WY, Victoria Falls in Zimbabwe.

As the water flows down hill often following faults in the rock, waterfalls form some of the most memorable landscapes.

Rivers - Colorado River TX, Nile in Egypt.

At lower altitudes, slow moving rivers support local vegetation and prolific bird life.

Alluvial Plane - Okavambo Delta in Botswana, Missippi Delta.

When the river finally runs out, any eroded material is dropped creating meandering streams in a delta, and supports huge variety of birds.  Okavambo is a inland delta.


Ocean Habitats 

Polar Ice shelves

At the poles, ice forms at the oceans edge, and covers ocean and any low lying land.   In the north, polar bears live on seal. In the south, penguins live on the local fish. 

Cold water upwell  - Alaska

Close to the polar ice caps, the upwelling of nutrients supports millions of tons of Krill that in turn feeds everything from Baleen Whales to fish galore, and their predators.  In the shallows,  seaweed provides an ideal food and protected environment for crustaceans and predators such as sea otters. 

Cliffs - CA

The eroded cliff edges of the land produce beach sand that decorates the coasts around the world. Seabirds thrive on coastal cliffs.

Temperate Beaches - CA

Many marine mammals also rely on beaches to rear their young. Predators patrol beaches from the air and water to feast on the young.

Tropical Beaches -  Galapagos

Beaches form a critical role as a nursery for many egg laying species such as turtles.  

Coral in warm shallows  - Great Barrier Reef

Coral is symbiotic with bacteria that acts as food at the bottom of the pyramid. Coral is anchored to the shallow sea floor, so they act as  a  fixed point of concentrated food. This results in their role as a location of exceptional diversity. 


Feature summary 

bottom of page